
media computing groupJan Borchers 1

Designing Interactive Systems II
Computer Science Graduate Program SS 2011

Prof. Dr. Jan Borchers
Media Computing Group

RWTH Aachen University

http://hci.rwth-aachen.de/dis2

media computing groupJan Borchers 2

Review: WM, UITK

• What are the main responsibilities of the window manager?
• Name some UI elements the window manager provides.
• What is late refinement?
• What is a UITK?
• Static and dynamic widget hierarchy?

media computing groupJan Borchers 3

The X Window System

• Asente, Reid (Stanford): W window system for V OS, (1982)
• W moved BWS&GEL to remote machine, replaced local library calls with

synch. communication

• Simplified porting to new architectures, but slow under Unix

• MIT: X as improvement over W (1984)
• Asynchronous calls: much-improved performance

• Application = client, calls X Library (Xlib) which packages and sends GEL
calls to the X Server and receives events using the X Protocol.

• Similar to Andrew, but window manager separate

• X10 first public release, X11 cross-platform redesign

media computing groupJan Borchers 4

X: Architecture

UITK+WM

BWS+GEL

X Server

HW

Kernel (OS)

Xlib

WM

Application

Xlib

Xt Intrinsics

Widget Set

Network

X is close to
our 4-layer

architecture
model

media computing groupJan Borchers 5

X Server

• X11 ISO standard, but limited since static protocol
• X server process combines GEL and BWS

• Responsible for one keyboard (one EL), but n physical screens (GLs)

• One machine can run several X servers

• Applications (with UITK) and WM are clients
• GEL: Direct drawing, raster model, rectangular clipping

• X-Server layers:
- Top = Device-independent X (DIX)

- Bottom = Device-dependent X (DDX)

• BWS can optionally buffer output regions

media computing groupJan Borchers 6

X Protocol

• Between X server process and X clients (incl. WM)
• Asynchronous, bidirectional byte stream,

order guaranteed by transport layer
• Implemented in TCP, but also others (DECnet,...)

• Creates about 20% time overhead with apps over network

• Four packet types
• Request (Client→Server)

• Reply, Event, Error (Server→Client)

• Packets contain opcode, length,
and sequence of resource IDs or numbers

media computing groupJan Borchers

Typical Xlib application
(pseudocode)

#include Xlib.h, Xutil.h

Display *d; int screen; GC gc; Window w; XEvent e;

main () {

d = XOpenDisplay(171.64.77.1:0);

screen = DefaultScreen(d);

w = XCreateSimpleWindow(d, DefaultRootWindow(d), x,y,w,h,
border, BlackPixel(d), WhitePixel(d)); // foreground &
background

XMapWindow(d, w);

gc = XCreateGC(d, w, mask, attributes); // Graphics Context
setup left out here

XSelectInput(d, w, ExposureMask|ButtonPressMask);

while (TRUE) {

! XNextEvent(d, &e);

! ! switch (e.type) {

! ! ! case Expose: XDrawLine (d, w, gc, x,y,w,h); break;

! ! ! case ButtonPress: exit(0);

} } }
7

media computing groupJan Borchers 8

X: Resources

• Logical: pixmap, window, graphic context, color map, visual
(graphics capabilities), font, cursor

• Real: setup (connection), screen (several), client
• All resources identified via RIDs
• Events: as in reference model; from user, BWS, and apps,

piped into appropriate connection
• X Server is simple single-entrance server (round-robin),

user-level process

media computing groupJan Borchers 9

Window Manager

• Ordinary client to the BWS
• Communicates with apps via hints in X Server
• Look&Feel mechanisms are separated from

Look&Feel policy
• Late refinement (session, user, application, call)

media computing groupJan Borchers 10

Window Manager

• Dynamically exchangeable, even during session
• twm, ctwm, gwm, mwm (Motif), olwm (OpenLook), rtl (Tiling), ...

• Implement different policies for window & icon placement, appearance,
all without static menu bar, mostly pop-ups, flexible listener modes

• No desktop functionality (separate app)
• Only manages windows directly on background (root)

window, rest managed by applications (since they don't
own root window space)

media computing groupJan Borchers 11

X: UITK

• X programming support consists of 3 layers
• Xlib:

• Lowest level, implements X protocol client, procedural (C)

• Programming on the level of the BWS

• Hides networking, but not X server differences (see “Visual”)

• Packages requests, usually not waiting for reply (asynchronous)

• At each Xlib call, checks for events from server and creates queue on
client (access with XGetNextEvent())

• Extensions require changing Xlib & Xserver source & protocol

Application

Xlib

Xt Intrinsics

Widget Set

media computing groupJan Borchers 12

X: UITK

• Xlib offers functions to create, delete, and modify server resources
(pixmaps, windows, graphic contexts, color maps, visuals, fonts), but app
has to do resource composition

• Display (server connection) is parameter in most calls

• X Toolkit Intrinsics (Xt)
• Functions to implement an OO widget set class (static) hierarchy

• Programming library and runtime system handling widgets

• Exchangeable (InterViews/C++), but standard is in C

• Each widget defined as set of “resources” (attributes)
(XtNborderColor,...)

Application

Xlib

Xt Intrinsics

Widget Set

media computing groupJan Borchers 13

X: UITK

• X Toolkit Intrinsics
• Just abstract meta widget classes (Simple, Container, Shell)

• At runtime, widgets have 4 states
- Created (data structure exists, linked into widget tree, no window)

- Managed (Size and position have been determined—policy)

- Realized (window has been allocated in server; happens automatically for all
children of a container)

- Mapped (rendered on screen)—may still be covered by other window!

Application

Xlib

Xt Intrinsics

Widget Set

media computing groupJan Borchers 14

UITK

• X Toolkit Intrinsics (continued)
• Xt Functions (XtRealizeWidget(),...) are generic to work with all widget

classes

• Event dispatch:

- Defined for most events in translation tables (I→A) in Xt

- →Widgets handle events alone (no event loop in app)!

- App logic in callback functions registered with widgets

Application

Xlib

Xt Intrinsics

Widget Set

media computing groupJan Borchers 15

Widget Sets

• Collection of user interface components
• Together with WM, define look&feel of system
• Several different ones available for X

• Athena (original, simple widget set, ca. 20 widgets, 2-D, no strong
associated style guide) — Xaw... prefix

• Motif (Open Software Foundation, commercial, 2.5-D widget set, >40
widgets, industry standard for X, comes with style guide and UIL)—Xm...
prefix

• Programming model already given in Intrinsics
• Motif just offers convenience functions

Application

Xlib

Xt Intrinsics

Widget Set

media computing groupJan Borchers 16

Athena Widget Set

• Original, free, extensible
• Ugly, simple
• Class hierarchy:

• Simple — Base class
for all other Athena
widgets. Does
nothing, but adds new
resources such as
cursor and border
pixmap.

media computing groupJan Borchers

• Standard widgets:

- Label	
 	
 Draws text and/or a bitmap.

- Command	
	
 Momentary push-button

- Toggle	
 	
 Push-button with two states.

- MenuButton	
 Push-button that brings up a menu.

- Grip	
	
 	
 Small widget used to adjust borders in a Paned widget.

- List	
 	
 	
 Widget to allow user to select one string from a list.

- Scrollbar	
 	
 Widget to allow user to set a value; typically to scroll another widget.

- Box	
 	
 	
 Composite widget which simply lays children out left-to-right.

- Form	
	
 	
 Constraint widget which positions children relative to each other.

- Dialog	
 	
 Form widget for dialog boxes.

- Paned	
 	
 Constraint widget letting user adjust borders between child widgets.

- Text	
 	
 	
 Base class for all other text classes.

- TextSink	
 	
 Base class for other text sinks.

- TextSrc	
 	
 Base class for other text sources (subclasses for ASCII and multi-byte text)

- SimpleMenu	
 Shell which manages a simple menu.

- Sme	
	
 	
 RectObj which contains a simple menu entry (blank).

- SmeBSB	
 	
 Menu entry with a string and optional left & right bitmaps.

- SmeLine	
 	
 Menu entry that draws a seperator line.

Athena

17

media computing groupJan Borchers 18

Athena

• Special widgets:

• Repeater	
	
 Command that repeatedly calls its
	
 	
 	
 	
 associated callback function for as long
	
 	
 	
 	
 as it's held.

• Panner	
 	
 Widget to allow user to scroll in two dimensions.

• StripChart	
 Widget to display a scrolling graph.

• Porthole	
 	
 Composite widget which allows a larger widget
	
 	
 	
 	
 to be windowed within a smaller window. Often
	
 	
 	
 	
 controlled by Panners.

• Viewport	
	
 Constraint widget, like a Porthole with scrollbars.

• Tree	
 	
 Constraint widget, lays its children out in a tree.

media computing groupJan Borchers 19

What Is Motif?

• Style Guide (book) for application developer
• Widget set (software library) implementing Style Guide
• Window Manager (mwm)
• UIL (User Interface Language)

media computing groupJan Borchers 20

The Motif Widget Set

• Simple Widgets: XmPrimitive
• XmLabel, XmText, XmSeparator, XmScrollbar,...

• Shell Widgets: Shell
• Widgets talking to Window Manager (root window children)

• Application shells, popup shells,...

• Constraint Widgets: XmManager
• Containters like XmDrawingArea, XmRowColumn,...

• Complex widgets like XmFileSelectionBox,...

media computing groupJan Borchers 21

Programming with Motif

• Initialize Intrinsics
• Connect to server, allocate toolkit resources

• Create widgets
• Building the dynamic widget tree for application

• Tell Intrinsics to manage each widget

• Realize widgets
• Sensitize for input, per default also make visible (map)

• Register callbacks
• Specify what app function to call when widgets are triggered

• Event loop
• Just call Intrinsics (XtMainLoop()) – app ends in some callback!

media computing groupJan Borchers

hello.c: A Simple Example

#include <X11/Intrinsic.h>
#include <X11/StringDefs.h>
#include <X11/Xlib.h>
#include <Xm/Xm.h>
#include <Xm/PushB.h>

void ExitCB (Widget w, caddr_t client_data, XmAnyCallbackStruct
*call_data)
{
 XtCloseDisplay (XtDisplay (w));
 exit (0);
}

void main(int argc, char *argv[])
{
 Widget toplevel, pushbutton;

 toplevel = XtInitialize (argv [0], "Hello", NULL, 0, &argc, argv);
 pushbutton = XmCreatePushButton (toplevel, "pushbutton", NULL, 0);
 XtManageChild (pushbutton);

 XtAddCallback (pushbutton, XmNactivateCallback, (void *) ExitCB,
NULL);

 XtRealizeWidget (toplevel);
 XtMainLoop ();
}

22

media computing groupJan Borchers 23

Resource files in X

• Where does the title for the PushButton come from?

• → Resource file specifies settings for application
• Syntax: Application.PathToWidget.Attribute: Value
• Resource Manager reads and merges several resource files

(system-, app- and user-specific) at startup (with priorities
as discussed in reference model)

File "Hello":

Hello.pushbutton.labelString:	
 Hello World

Hello.pushbutton.width:	
 	
 100

Hello.pushbutton.height:	
 	
 20

media computing groupJan Borchers 24

User Interface Language UIL

• Resource files specify late refinement of widget attributes,
but cannot add widgets

• Idea: specify actual widget tree of an application outside C
source code, in UIL text file

• C source code only contains application-specific callbacks, and simple
stub for user interface

• UIL text file is translated with separate compiler

• At runtime, Motif Resource Manager reads compiled UIL file to
construct dynamic widget tree for app

• Advantage: UI clearly separated from app code Decouples
development

media computing groupJan Borchers

Wayland: Motivation

• A lot of functionality was moved from the X Server to the
kernel

• An X server has to support a large amount of functionality
• Core fonts (code tables, glyph rasterization, XLFDs)

• Rendering pipeline designed in the 1980s
• WMs add lots of decoration and transforms to windows
• No network transparency

25

media computing groupJan Borchers

Wayland is...

• A communication protocol between the compositor and
its clients (similar to Xlib)

• An implementation of that protocol as a C library

26

media computing groupJan Borchers

Architecture: X

27

X Server

HW

Kernel

Compositor (WM)

X Client

X Client

• Kernel passes events from the
hardware to the X Server

• X Server determines window to
receive event

• Client reacts to event and returns
rendering request

• Compositor recomposites screen

• X Server renders

media computing groupJan Borchers

Architecture: Wayland

28

Wayland Compositor

HW

Kernel

Wayland Client

Wayland Client

• Kernel passes events from the hardware
to the compositor

• Check scenegraph to determine which
window receives the event

• Client reacts to event and renders UI

• Compositor recomposites screen

media computing groupJan Borchers

Wayland Rendering

• Direct rendering mechanism (DRI2)
• Already used in current X servers

• Client and server share a video memory buffer
• Application renders into buffer (using, e.g., OpenGL)
• Compositor uses this buffer as texture

29

media computing groupJan Borchers

Wayland: Display Updates

• Using two or more buffers
• Render content in a new buffer

• Tell the compositor to use that new buffer as texture

• Using one buffer
• Requires synchronization: avoid race between rendering and compositor

• New content rendered into back buffer and copied to global buffer

30

media computing groupJan Borchers

X as Wayland Client

31

Wayland Compositor

HW

Kernel

Wayland Client

X Client

X Server

• Provide backward
compatibility path

• Only small changes to X
server required

• X server passes root
window or top-level
windows

• Wayland handles
presentation of the
windows

media computing groupJan Borchers
Qt GTK+

Wayland: UITK Support

32
Clutter X.org

