O O

| Heivetica 3| [Regular ¢
(2N L L

L mm[]|l EEEE
8 12 1 16
1 1

B, . \

3 - | « G > \

Designing Interactive Systems ||

Computer Science Graduate Program SS 201 |

Prof. Dr. Jan Borchers

Media Computing Group
RWTH Aachen University

http://hci.rwth-aachen.de/dis2

Jan Borchers | media computing group 4

Review: WM, UITK

* What are the main responsibilities of the window manager!?
* Name some Ul elements the window manager provides.

* What is late refinement?

* Whatis a UITK?

 Static and dynamic widget hierarchy?

oril
ooooo
0010

Jan Borchers 2 media computing group i’

The XWindow System

* Asente, Reid (Stanford): VW window system forV OS, (1982)

* W moved BWS&GEL to remote machine, replaced local library calls with
synch. communication

* Simplified porting to new architectures, but slow under Unix

* MIT: X as improvement over W (1984)

* Asynchronous calls: much-improved performance

* Application = client, calls X Library (Xlib) which packages and sends GEL
calls to the X Server and receives events using the X Protocol.

* Similar to Andrew, but window manager separate

« XIO first public release, X1 | cross-platform redesign

oril
ooooo
0010

Jan Borchers 3 media computing group i’

X:Architecture

A Application R

X is close to
e (w) UITK*WM our 4-layer

l : Network -------- model
)
X
C Kernel (OS)) BWS+GEL
BTYY)
_

Jan Borchers 4 media computing group 4

X Server

X11 1SO standard, but limited since static protocol

* X server process combines GEL and BWS

* Responsible for one keyboard (one EL), but n physical screens (GLs)

e One machine can run several X servers

Applications (with UITK) and WM are clients

GEL: Direct drawing, raster model, rectangular clipping

* X-Server layers:
- Top = Device-independent X (DIX)
- Bottom = Device-dependent X (DDX)

* BWS can optionally buffer output regions

Jan Borchers 5 media computing group 4

X Protocol

Between X server process and X clients (incl. VWM)
* Asynchronous, bidirectional byte stream,
order guaranteed by transport layer
* Implemented in TCP, but also others (DECnet,...)
* Creates about 20% time overhead with apps over network
* Four packet types

* Request (Client—Server)

* Reply, Event, Error (Server— Client)

Packets contain opcode, length,
and sequence of resource IDs or numbers

Jan Borchers 6 media computing group 4

Typical Xlib application
(pseudocode)
#include X1lib.h, Xutil.h
Display *d; int screen; GC gc; Window w; XEvent e;
main () {
d = XOpenDisplay(171.64.77.1:0);

screen = DefaultScreen(d);

w = XCreateSimpleWindow(d, DefaultRootWindow(d), x,y,w,h,
border, BlackPixel(d), WhitePixel(d)); // foreground &
background

XMapWindow(d, w);

gc = XCreateGC(d, w, mask, attributes); // Graphics Context
setup left out here

XSelectInput(d, w, ExposureMask|ButtonPressMask);
while (TRUE) {
XNextEvent (d, &e);
switch (e.type) {
case Expose: XDrawLine (d, w, gc, X,y,w,h); break;
case ButtonPress: exit(0);
b} o)

Jan Borchers 7 media computing group

X: Resources

* Logical: pixmap, window, graphic context, color map, visual
(graphics capabilities), font, cursor

* Real:setup (connection), screen (several), client
* All resources identified via RIDs

* Events:as in reference model; from user, BWS, and apps,
piped into appropriate connection

* X Server is simple single-entrance server (round-robin),
user-level process

Jan Borchers 8 media computing group 4

Window Manager

* Ordinary client to the BWS

Communicates with apps via hints in X Server

* Look&Feel mechanisms are separated from
_Look&Feel policy

* Late refinement (session, user, application, call)

oril
ooooo
0010

Jan Borchers 9 media computing group it

Window Manager

* Dynamically exchangeable, even during session
* twm, ctwm, gwm, mwm (Motif), olwm (OpenLook), rtl (Tiling), ...

* Implement different policies for window & icon placement, appearance,
all without static menu bar, mostly pop-ups, flexible listener modes

* No desktop functionality (separate app)

* Only manages windows directly on background (root)
window, rest managed by applications (since they don't
own root window space)

Jan Borchers 10 media computing group 4

f Application

Cigs) X: UITK

Xt Intrinsics J

N'L@‘

e X programming support consists of 3 layers
« Xlib:

* Lowest level, implements X protocol client, procedural (C)

" Y Y

* Programming on the level of the BWS
* Hides networking, but not X server differences (see “Visual”)
* Packages requests, usually not waiting for reply (asynchronous)

* At each Xlib call, checks for events from server and creates queue on
client (access with XGetNextEvent())

* Extensions require changing Xlib & Xserver source & protocol

oril
ooooo
0010

Jan Borchers I media computing group 4

f Application

ey X: UITK

Xlib

& & ¢

« Xlib offers functions to create, delete, and modify server resources
(pixmaps, windows, graphic contexts, color maps, visuals, fonts), but app
has to do resource composition

* Display (server connection) is parameter in most calls

* XToolkit Intrinsics (Xt)

* Functions to implement an OO widget set class (static) hierarchy
* Programming library and runtime system handling widgets
* Exchangeable (InterViews/C++), but standard is in C

* Each widget defined as set of “resources” (attributes)
(XtNborderColor,...)

Jan Borchers 12 media computing group " ¢

Application

s X: UITK

Xlib

e X Toolkit Intrinsics

* Just abstract meta widget classes (Simple, Container, Shell)

* At runtime, widgets have 4 states
- Created (data structure exists, linked into widget tree, no window)
- Managed (Size and position have been determined—policy)

- Realized (window has been allocated in server; happens automatically for all
children of a container)

- Mapped (rendered on screen)—may still be covered by other window!

oril
|||||
0010

Jan Borchers 13 media computing group i

Application

-

>Widget set] UITK

AL INTrIr

!

Xlib

* XToolkit Intrinsics (continued)

* Xt Functions (XtRealizeWidget(),...) are generic to work with all widget
classes

* Event dispatch:
- Defined for most events in translation tables (I A) in Xt
- —Widgets handle events alone (no event loop in app)!

- App logic in callback functions registered with widgets

Jan Borchers 14 media computing group 4 $®

f Application

(A

Widget Sets

Xt Intrinsics]

& B)

Xlib

Collection of user interface components

Together with WM, define look&feel of system

Several different ones available for X

* Athena (original, simple widget set, ca. 20 widgets, 2-D, no strong
associated style guide) — Xaw... prefix

* Motif (Open Software Foundation, commercial, 2.5-D widget set, >40
widgets, industry standard for X, comes with style guide and UIL)—Xm...
prefix

* Programming model already given in Intrinsics

* Motif just offers convenience functions

Jan Borchers) media computing group 4

Athena Widget Set

™ = sampler

| Togple =tate 1 |

Label HI:I].ti Connand Fepeater Toggle List .. .
i;E:l |press| |press| Fee Fie ¢ Orlglnal, free, eXtenSIble
8 Fun

Scrollbar Panner Strip Chart AzciiText Forn ° UgIY’ Slmple
LI | hello, .

j betle,_ E * Class hierarchy:
Dialog Paned Porthole Yiewport * Simple T Base Class
g W is the © for all other Athena

i od dogs to How is the .
es | [no] y et widgets. Does
— nothing, but adds new
Tree HenuButton || Core Radio
resources such as

B |nenu| > press
A
Loy V cursor and border

Checkbox Gaupe Gaupe P IXM ap.
L =—e———
M press I :E
05 1015 20 25 H_hal{-
-F

Jan Borchers l6 media computing group & ¢

* Standard widgets:

Jan Borchers

Label
Command
Toggle
MenuButton
Grip

List
Scrollbar
Box

Form
Dialog
Paned

Text
TextSink
TextSrc

SimpleMenu
Sme
SmeBSB

Smeline

Draws text and/or a bitmap. Ath e n a
Momentary push-button

Push-button with two states.

Push-button that brings up a menu.

Small widget used to adjust borders in a Paned widget.

Widget to allow user to select one string from a list.

Widget to allow user to set a value; typically to scroll another widget.
Composite widget which simply lays children out left-to-right.

Constraint widget which positions children relative to each other.

Form widget for dialog boxes.

Constraint widget letting user adjust borders between child widgets.

Base class for all other text classes.
Base class for other text sinks.

Base class for other text sources (subclasses for ASCII and multi-byte text)

Shell which manages a simple menu.

RectObj which contains a simple menu entry (blank).
Menu entry with a string and optional left & right bitmaps.
Menu entry that draws a seperator line.

17 media computing group

oril
ooooo
0010

e Special widgets:

* Repeater

. Panner
e StripChart
. Porthole

* Viewport

. Tree

Jan Borchers

Command that repeatedly calls its
associated callback function for as long
as it's held.

Widget to allow user to scroll in two dimensions.
Widget to display a scrolling graph.

Composite widget which allows a larger widget
to be windowed within a smaller window. Often
controlled by Panners.

Constraint widget, like a Porthole with scrollbars.

Constraint widget, lays its children out in a tree.

Athena

media computing group i’

What Is Motif?

30 Items 21 Hidden

* Style Guide (book) for application developer
* Widget set (software library) implementing Style Guide
* Window Manager (mwm)

* UIL (User Interface Language)

Jan Borchers 19 media computing group 4

The Motif Widget Set

* Simple Widgets: XmPrimitive
* XmlLabel, XmText, XmSeparator, XmScrollbar,...

* Shell Widgets: Shell

* Widgets talking to Window Manager (root window children)
* Application shells, popup shells,...
* Constraint Widgets: XmManager

* Containters like XmDrawingArea, XmRowColumn,...

 Complex widgets like XmFileSelectionBox,...

oril
|||||
0010

Jan Borchers 20 media computing group 4

Programming with Motif

Initialize Intrinsics

e Connect to server, allocate toolkit resources

Create widgets

* Building the dynamic widget tree for application

* Tell Intrinsics to manage each widget

* Realize widgets

* Sensitize for input, per default also make visible (map)

* Register callbacks

* Specify what app function to call when widgets are triggered

Event loop

e Just call Intrinsics (XtMainLoop()) — app ends in some callback!

oril
ooooo
0010

Jan Borchers 21 media computing group it

hello.c: A Simple Example

#include <X11/Intrinsic.h>
#include <X11/StringDefs.h>
#include <X11/X1lib.h>
#include <Xm/Xm.h>

#include <Xm/PushB.h>

void ExitCB (Widget w, caddr t client data, XmAnyCallbackStruct
*call data)

{
XtCloseDisplay (XtDisplay (w));

exit (0);
}

void main(int argc, char *argv[])

{
Widget toplevel, pushbutton;

toplevel = XtInitialize (argv [0], "Hello", NULL, 0, &argc, argv);
pushbutton = XmCreatePushButton (toplevel, "pushbutton", NULL, 0);
XtManageChild (pushbutton);

XtAddCallback (pushbutton, XmNactivateCallback, (void *) ExitCB,
NULL) ;

XtRealizeWidget (toplevel);
XtMainLoop ();

o J010
) oril
= 1010
oolo

Jan Borchers 22 media computing group

Resource files in X

* Where does the title for the PushButton come from?

* — Resource file specifies settings for application
* Syntax:Application.PathToWidget.Attribute:Value

* Resource Manager reads and merges several resource files
(system-, app- and user-specific) at startup (with priorities
as discussed in reference model)

File "Hello":
Hello.pushbutton.labelString: Hello World
Hello.pushbutton.width: 100

Hello.pushbutton.height: 20 O

Jan Borchers 23 media computing group

User Interface Language UIL

* Resource files specify late refinement of widget attributes,
but cannot add widgets

* ldea: specify actual widget tree of an application outside C
source code, in UIL text file

* C source code only contains application-specific callbacks, and simple
stub for user interface

* UIL text file is translated with separate compiler

* At runtime, Motif Resource Manager reads compiled UIL file to
construct dynamic widget tree for app

* Advantage: Ul clearly separated from app code Decouples
development

oril
ooooo
0010

Jan Borchers 24 media computing group & 49

Wayland: Motivation

A lot of functionality was moved from the X Server to the
kernel

An X server has to support a large amount of functionality
* Core fonts (code tables, glyph rasterization, XLFDs)

* Rendering pipeline designed in the 1980s

WMs add lots of decoration and transforms to windows

* No network transparency

oril
ooooo
0010

Jan Borchers 25 media computing group & 49

Wayland is...

* A communication protocol between the compositor and
its clients (similar to Xlib)

* An implementation of that protocol as a C library

oril
ooooo
0010

Jan Borchers 26 media computing group & ¢

(Xl)

(

X Client j

f[Compositor (WM)]

X Server

Kernel

)

HW

& \& \&)

)

Jan Borchers

Architecture: X

Kernel passes events from the
hardware to the X Server

X Server determines window to
receive event

Client reacts to event and returns
rendering request

Compositor recomposites screen

X Server renders

& media computing group

Architecture: Wayland

[Wayland Client]

[Wayland Client] * Kernel passes events from the hardware
to the compositor

* Check scenegraph to determine which
window receives the event

e C(Client reacts to event and renders Ul

* Compositor recomposites screen

& &)

Jan Borchers 28 media computing group ' 9

Wayland Rendering

Direct rendering mechanism (DRI2)

* Already used in current X servers

Client and server share a video memory buffer
* Application renders into buffer (using, e.g., OpenGL)

* Compositor uses this buffer as texture

Jan Borchers 29 media computing group 4

Wayland: Display Updates

* Using two or more buffers

e Render content in a new buffer

* Tell the compositor to use that new buffer as texture

* Using one buffer

* Requires synchronization: avoid race between rendering and compositor

* New content rendered into back buffer and copied to global buffer

oril
ooooo
0010

Jan Borchers 30 media computing group 4

[Wayland Client)

X as Wayland Client

[X Client j

yWayland"Compositor

Kernel

& & \&)

HW

)
)

Jan Borchers

31

Provide backward
compatibility path

Only small changes to X
server required

X server passes root

winda
winda

ow or top-level
QWS

Way

and handles

presentation of the
windows

Wayland: UITK Support

- Wayland Compositor

Wayland Drag and Drop Demo PR T TP

RN s K

src/wayland

ition,patch

nd
Hakefile
Hakefile,am
Hakefile,am"
Makefile,in
meego, txt

o

U i

per-client-id-namespace,patch
protocol
README
relative-events,patch
setup,sh
setup,sh”
- LUNT 14ure, du shader-visuals,patch
| reate-surface,patch spec

] amage,patch stamp-hl
N data 000
wayland

TTisW/

MY

@
Qt GTK+ Clutter X.oorg

Jan Borchers 32 media computing group

